wzhe06

计算广告论文、学习资料、业界分享

Papers on Computational Advertising
Under MIT License
By wzhe06

deep-learning machine-learning advertising papers recommender-system computational-advertising ctr-prediction

计算广告论文、学习资料、业界分享

动态更新工作中实现或者阅读过的计算广告相关论文、学习资料和业界分享,作为自己工作的总结,也希望能为计算广告相关行业的同学带来便利。
所有资料均来自于互联网,如有侵权,请联系王喆。同时欢迎对计算广告感兴趣的同学与我讨论相关问题,我的联系方式如下:
* Email: [email protected]
* LinkedIn: 王喆的LinkedIn
* 知乎私信: 王喆的知乎


会不断加入一些重要的计算广告相关论文和资料,并去掉一些过时的或者跟计算广告不太相关的论文
* New! [Airbnb Embedding] Real-time Personalization using Embeddings for Search Ranking at Airbnb (Airbnb 2018)
2018 KDD best paper, Airbnb基于embeddding构建的实时搜索推荐系统
* New! [DIEN] Deep Interest Evolution Network for Click-Through Rate Prediction (Alibaba 2019)
阿里提出的深度兴趣网络(Deep Interest Network)最新改进DIEN


其他相关资源
* 张伟楠的RTB Papers列表
* 基于Spark MLlib的CTR预估模型(LR, FM, RF, GBDT, NN, PNN)
* 推荐系统相关论文和资源列表
* Honglei Zhang的推荐系统论文列表


目录
Optimization Method

Online Optimization,Parallel SGD,FTRL等优化方法,实用并且能够给出直观解释的文章
* Google Vizier A Service for Black-Box Optimization
* 在线最优化求解(Online Optimization)-冯扬
* Hogwild A Lock-Free Approach to Parallelizing Stochastic Gradient Descent
* Parallelized Stochastic Gradient Descent
* A Survey on Algorithms of the Regularized Convex Optimization Problem
* Follow-the-Regularized-Leader and Mirror Descent- Equivalence Theorems and L1 Regularization
* A Review of Bayesian Optimization
* Taking the Human Out of the Loop- A Review of Bayesian Optimization
* 非线性规划


Topic Model

话题模型相关文章,PLSA,LDA,进行广告Context特征提取,创意优化经常会用到Topic Model
* 概率语言模型及其变形系列
* Parameter estimation for text analysis
* LDA数学八卦
* Distributed Representations of Words and Phrases and their Compositionality
* Dirichlet Distribution, Dirichlet Process and Dirichlet Process Mixture(PPT)
* 理解共轭先验


Google Three Papers

Google三大篇,HDFS,MapReduce,BigTable,奠定大数据基础架构的三篇文章,任何从事大数据行业的工程师都应该了解
* MapReduce Simplified Data Processing on Large Clusters
* The Google File System
* Bigtable A Distributed Storage System for Structured Data


Factorization Machines

FM因子分解机模型的相关paper,在计算广告领域非常实用的模型
* FM PPT by CMU
* Factorization Machines Rendle2010
* libfm-1.42.manual
* Scaling Factorization Machines to Relational Data
* fastFM- A Library for Factorization Machines


Embedding

Budget Control

广告系统中Pacing,预算控制,以及怎么把预算控制与其他模块相结合的问题
* Budget Pacing for Targeted Online Advertisements at LinkedIn
* 广告系统中的智能预算控制策略
* Predicting Traffic of Online Advertising in Real-time Bidding Systems from Perspective of Demand-Side Platforms
* Real Time Bid Optimization with Smooth Budget Delivery in Online Advertising
* PID控制经典培训教程
* PID控制原理与控制算法
* Smart Pacing for Effective Online Ad Campaign Optimization


Tree Model

树模型和基于树模型的boosting模型,树模型的效果在大部分问题上非常好,在CTR,CVR预估及特征工程方面的应用非常广
* Introduction to Boosted Trees
* Classification and Regression Trees
* Greedy Function Approximation A Gradient Boosting Machine
* Classification and Regression Trees


Guaranteed Contracts Ads

事实上,现在很多大的媒体主仍是合约广告系统,合约广告系统的在线分配,Yield Optimization,以及定价问题都是非常重要且有挑战性的问题
* A Dynamic Pricing Model for Unifying Programmatic Guarantee and Real-Time Bidding in Display Advertising
* Pricing Guaranteed Contracts in Online Display Advertising
* Risk-Aware Dynamic Reserve Prices of Programmatic Guarantee in Display Advertising
* Pricing Guidance in Ad Sale Negotiations The PrintAds Example
* Risk-Aware Revenue Maximization in Display Advertising


Classic CTR Prediction

Bidding Strategy

计算广告中广告定价,RTB过程中广告出价策略的相关问题
* Research Frontier of Real-Time Bidding based Display Advertising
* Budget Constrained Bidding by Model-free Reinforcement Learning in Display Advertising
* Real-Time Bidding with Multi-Agent Reinforcement Learning in Display Advertising
* Real-Time Bidding by Reinforcement Learning in Display Advertising
* Combining Powers of Two Predictors in Optimizing Real-Time Bidding Strategy under Constrained Budget
* Bid-aware Gradient Descent for Unbiased Learning with Censored Data in Display Advertising
* Optimized Cost per Click in Taobao Display Advertising
* Real-Time Bidding Algorithms for Performance-Based Display Ad Allocation
* Deep Reinforcement Learning for Sponsored Search Real-time Bidding


Computational Advertising Architect

广告系统的架构问题
* [TensorFlow Whitepaper]TensorFlow- Large-Scale Machine Learning on Heterogeneous Distributed Systems
* 大数据下的广告排序技术及实践
* 美团机器学习 吃喝玩乐中的算法问题
* [Parameter Server]Scaling Distributed Machine Learning with the Parameter Server
* Display Advertising with Real-Time Bidding (RTB) and Behavioural Targeting
* A Comparison of Distributed Machine Learning Platforms
* Efficient Query Evaluation using a Two-Level Retrieval Process
* [TensorFlow Whitepaper]TensorFlow- A System for Large-Scale Machine Learning
* [Parameter Server]Parameter Server for Distributed Machine Learning
* Overlapping Experiment Infrastructure More, Better, Faster Experimentation


Machine Learning Tutorial

机器学习方面一些非常实用的学习资料
* 各种回归的概念学习
* 机器学习总图
* Efficient Estimation of Word Representations in Vector Space
* Rules of Machine Learning- Best Practices for ML Engineering
* An introduction to ROC analysis
* Deep Learning Tutorial
* 广义线性模型
* 贝叶斯统计学(PPT)
* 关联规则基本算法及其应用


Transfer Learning

迁移学习相关文章,计算广告中经常遇到新广告冷启动的问题,利用迁移学习能较好解决该问题
* [Multi-Task]An Overview of Multi-Task Learning in Deep Neural Networks
* Scalable Hands-Free Transfer Learning for Online Advertising
* A Survey on Transfer Learning


Deep Learning CTR Prediction

Exploration and Exploitation

探索和利用,计算广告中非常经典,也是容易被大家忽视的问题,其实所有的广告系统都面临如何解决新广告主冷启动,以及在效果不好的情况下如何探索新的优质流量的问题,希望该目录下的几篇文章能够帮助到你
* An Empirical Evaluation of Thompson Sampling
* Dynamic Online Pricing with Incomplete Information Using Multi-Armed Bandit Experiments
* 广告系统中的探索与利用算法
* Finite-time Analysis of the Multiarmed Bandit Problem
* A Fast and Simple Algorithm for Contextual Bandits
* Customer Acquisition via Display Advertising Using MultiArmed Bandit Experiments
* Mastering the game of Go with deep neural networks and tree search
* Exploring compact reinforcement-learning representations with linear regression
* Incentivizting Exploration in Reinforcement Learning with Deep Predictive Models
* Bandit Algorithms Continued- UCB1
* A Contextual-Bandit Approach to Personalized News Article Recommendation(LinUCB)
* Exploitation and Exploration in a Performance based Contextual Advertising System
* Bandit based Monte-Carlo Planning
* Random Forest for the Contextual Bandit Problem
* Unifying Count-Based Exploration and Intrinsic Motivation
* Analysis of Thompson Sampling for the Multi-armed Bandit Problem
* Thompson Sampling PPT
* Hierarchical Deep Reinforcement Learning- Integrating Temporal Abstraction and Intrinsic Motivation
* Exploration and Exploitation Problem by Wang Zhe
* Exploration exploitation in Go UCT for Monte-Carlo Go
* 对抗搜索、多臂老虎机问题、UCB算法
* Using Confidence Bounds for Exploitation-Exploration Trade-offs


Allocation

广告流量的分配问题
* An Efficient Algorithm for Allocation of Guaranteed Display Advertising
* Ad Serving Using a Compact Allocation Plan