gjy3035

Awesome Crowd Counting

Awesome Crowd Counting
By gjy3035

computer-vision crowd-analysis crowd-counting

Awesome Crowd Counting

If you have any problems, suggestions or improvements, please submit the issue or PR.


Contents

Misc
News

Call for Papers

Challenge

Code

Technical blog

GT generation

Related Tasks

Crowd Analysis, Crowd Localization, Video Surveillance, Dense/Small/Tiny Object Detection


Datasets

Please refer to this page.


Papers

Considering the increasing number of papers in this field, we roughly summarize some articles and put them into the following categories (they are still listed in this document):


| [Top Conference/Journal] | [Survey] | [Un-/semi-/weakly-/self- Supervised Learning] |
| :---- | :---- | :---- |
| [Auxiliary Tasks] | [Localization] | [Transfer Learning and Domain Adaptation] |
| [Light-weight Models] | [Video] | [Network Design, Search] |
| [Perspective Map] | [Attention] | Todo |


arXiv papers

Note that all unpublished arXiv papers are not included in the leaderboard of performance.


Earlier ArXiv Papers

- PSCNet: Pyramidal Scale and Global Context Guided Network for Crowd Counting [[paper](https://arxiv.org/abs/2012.03597)]
- Wide-Area Crowd Counting: Multi-View Fusion Networks for Counting in Large Scenes [[paper](https://arxiv.org/abs/2012.00946)](extension of [MVMS](#MVMS))
- A Strong Baseline for Crowd Counting and Unsupervised People Localization [[paper](https://arxiv.org/abs/2011.03725)]
- Completely Self-Supervised Crowd Counting via Distribution Matching [[paper](https://arxiv.org/abs/2009.06420)][[code](https://github.com/val-iisc/css-ccnn)]![GitHub stars](https://img.shields.io/github/stars/val-iisc/css-ccnn.svg?logo=github&label=Stars)
- A Study of Human Gaze Behavior During Visual Crowd Counting [[paper](https://arxiv.org/abs/2009.06502)]
- Bayesian Multi Scale Neural Network for Crowd Counting [[paper](https://arxiv.org/abs/2007.14245)][[code](https://github.com/abhinavsagar/bmsnn)]![GitHub stars](https://img.shields.io/github/stars/abhinavsagar/bmsnn.svg?logo=github&label=Stars)
- Dense Crowds Detection and Counting with a Lightweight Architecture [[paper](https://arxiv.org/abs/2007.06630)]
- Exploit the potential of Multi-column architecture for Crowd Counting [[paper](https://arxiv.org/abs/2007.05779)][[code](https://github.com/JunhaoCheng/Pyramid_Scale_Network)]![GitHub stars](https://img.shields.io/github/stars/JunhaoCheng/Pyramid_Scale_Network.svg?logo=github&label=Stars)
- Recurrent Distillation based Crowd Counting [[paper](https://arxiv.org/abs/2006.07755)]
- Ambient Sound Helps: Audiovisual Crowd Counting in Extreme Conditions [[paper](https://arxiv.org/abs/2005.07097)][[code](https://github.com/qingzwang/AudioVisualCrowdCounting)]![GitHub stars](https://img.shields.io/github/stars/qingzwang/AudioVisualCrowdCounting.svg?logo=github&label=Stars)
- CNN-based Density Estimation and Crowd Counting: A Survey [[paper](https://arxiv.org/abs/2003.12783)]
- Drone Based RGBT Vehicle Detection and Counting: A Challenge [[paper](https://arxiv.org/abs/2003.02437)]
- From Open Set to Closed Set: Supervised Spatial Divide-and-Conquer for Object Counting [[paper](https://arxiv.org/abs/2001.01886)](extension of [S-DCNet](#S-DCNet))
- AutoScale: Learning to Scale for Crowd Counting [[paper](https://arxiv.org/abs/1912.09632)](extension of [L2SM](#L2SM))
- Domain-adaptive Crowd Counting via Inter-domain Features Segregation and Gaussian-prior Reconstruction [[paper](https://arxiv.org/abs/1912.03677)]
- Drone-based Joint Density Map Estimation, Localization and Tracking with Space-Time Multi-Scale Attention Network [[paper](https://arxiv.org/abs/1912.01811)][[code](https://github.com/VisDrone)]
- Using Depth for Pixel-Wise Detection of Adversarial Attacks in Crowd Counting [[paper](https://arxiv.org/abs/1911.11484)]
- Segmentation Guided Attention Network for Crowd Counting via Curriculum Learning [[paper](https://arxiv.org/abs/1911.07990)]
- Dense Scale Network for Crowd Counting [[paper](https://arxiv.org/abs/1906.09707)][unofficial code: [PyTorch](https://github.com/rongliangzi/Dense-Scale-Network-for-Crowd-Counting)]![GitHub stars](https://img.shields.io/github/stars/rongliangzi/Dense-Scale-Network-for-Crowd-Counting.svg?logo=github&label=Stars)
- Content-aware Density Map for Crowd Counting and Density Estimation [[paper](https://arxiv.org/abs/1906.07258)]
- Crowd Transformer Network [[paper](https://arxiv.org/abs/1904.02774)]
- W-Net: Reinforced U-Net for Density Map Estimation [[paper](https://arxiv.org/abs/1903.11249)][[code](https://github.com/ZhengPeng7/W-Net-Keras)]![GitHub stars](https://img.shields.io/github/stars/ZhengPeng7/W-Net-Keras.svg?logo=github&label=Stars)
- Dual Path Multi-Scale Fusion Networks with Attention for Crowd Counting [[paper](https://arxiv.org/pdf/1902.01115.pdf)]
- Scale-Aware Attention Network for Crowd Counting [[paper](https://arxiv.org/pdf/1901.06026.pdf)]
- Crowd Counting with Density Adaption Networks [[paper](https://arxiv.org/abs/1806.10040)]
- Improving Object Counting with Heatmap Regulation [[paper](https://arxiv.org/abs/1803.05494)][[code](https://github.com/littleaich/heatmap-regulation)]![GitHub stars](https://img.shields.io/github/stars/littleaich/heatmap-regulation.svg?logo=github&label=Stars)
- Structured Inhomogeneous Density Map Learning for Crowd Counting [[paper](https://arxiv.org/pdf/1801.06642.pdf)]

2021


2020

2019

2018

2017

2016

2015

2014

2013

2012

2011

2010

2008

Leaderboard

The section is being continually updated. Note that some values have superscript, which indicates their source.


NWPU

| Year-Conference/Journal | Methods | Val-MAE | Val-MSE | Test-MAE | Test-MSE | Test-NAE | Backbone |
| ---- | ------------------------------------------ | ------- | ------- | -------- | -------- | -------- | -------- |
| 2016--CVPR | MCNN | 218.5 | 700.6 | 232.5 | 714.6 | 1.063 | FS |
| 2018--CVPR | CSRNet | 104.8 | 433.4 | 121.3 | 387.8 | 0.604 | VGG-16 |
| 2019--CSVT | PCC-Net | 100.7 | 573.1 | 112.3 | 457.0 | 0.251 | VGG-16 |
| 2019--CVPR | CAN | 93.5 | 489.9 | 106.3 | 386.5 | 0.295 | VGG-16 |
| 2019--NC | SCAR | 81.5 | 397.9 | 110.0 | 495.3 | 0.288 | VGG-16 |
| 2019--ICCV | BL | 93.6 | 470.3 | 105.4 | 454.2 | 0.203 | VGG-19 |
| 2019--CVPR | SFCN | 95.4 | 608.3 | 105.4 | 424.1 | 0.254 | ResNet-101 |
| 2020--NeurIPS |DM-Count | 70.5 | 357.6 | 88.4 | 388.6 | 0.169 | VGG-19 |


ShanghaiTech Part A

| Year-Conference/Journal | Methods | MAE | MSE | PSNR | SSIM | Params | Pre-trained Model |
| ---- | ------------------------------------ | ----- | ----- | ----- | ---- | ------ | ------------------- |
| 2016--CVPR | MCNN | 110.2 | 173.2 | 21.4CSR | 0.52CSR | 0.13MSANet | None |
| 2017--AVSS | CMTL | 101.3 | 152.4 | - | - | - | None |
| 2017--CVPR | Switching CNN | 90.4 | 135.0 | - | - | 15.11MSANet | VGG-16 |
| 2017--ICIP | MSCNN | 83.8 | 127.4 | - | - | - | - |
| 2017--ICCV | CP-CNN | 73.6 | 106.4 | 21.72CP-CNN | 0.72CP-CNN | 68.4MSANet | - |
| 2018--AAAI | TDF-CNN | 97.5 | 145.1 | - | - | - | - |
| 2018--WACV | SaCNN | 86.8 | 139.2 | - | - | - | - |
| 2018--CVPR | ACSCP | 75.7 | 102.7 | - | - | 5.1M | None |
| 2018--CVPR | D-ConvNet-v1 | 73.5 | 112.3 | - | - | - | VGG-16 |
| 2018--CVPR | IG-CNN | 72.5 | 118.2 | - | - | - | VGG-16 |
| 2018--CVPR | L2R (Multi-task, Query-by-example) | 72.0 | 106.6 | - | - | - | VGG-16 |
| 2018--CVPR | L2R (Multi-task, Keyword) | 73.6 | 112.0 | - | - | - | VGG-16 |
| 2019--CVPRW| GSP (one stage, efficient) | 70.7 | 103.6 | - | - | - | VGG-16 |
| 2018--IJCAI| DRSAN | 69.3 | 96.4 | - | - | - | - |
| 2018--ECCV | ic-CNN (one stage) | 69.8 | 117.3 | - | - | - | - |
| 2018--ECCV | ic-CNN (two stages) | 68.5 | 116.2 | - | - | - | - |
| 2018--CVPR | CSRNet | 68.2 | 115.0 | 23.79 | 0.76 | 16.26MSANet |VGG-16|
| 2018--ECCV | SANet | 67.0 | 104.5 | - | - | 0.91M | None |
| 2019--AAAI | GWTA-CCNN | 154.7 | 229.4 | - | - | - | - |
| 2021--TPAMI| LA-Batch (backbone CSRNet) | 65.8 | 103.6 | - | - | - | - |
| 2019--ICASSP | ASD | 65.6 | 98.0 | - | - | - | - |
| 2019--ICCV | CFF | 65.2 | 109.4 | 25.4 | 0.78 | - | - |
| 2019--CVPR | SFCN | 64.8 | 107.5 | - | - | - | - |
| 2020--AAAI | DUBNet | 64.6 | 106.8 | - | - | - | - |
| 2019--ICCV | SPN+L2SM | 64.2 | 98.4 | - | - | - | - |
| 2019--CVPR | TEDnet | 64.2 | 109.1 | 25.88 | 0.83 | 1.63M | - |
| 2019--CVPR | ADCrowdNet(AMG-bAttn-DME) | 63.2 | 98.9 | 24.48 | 0.88 | - | - |
| 2019--CVPR | PACNN | 66.3 | 106.4 | - | - | - | - |
| 2019--CVPR | PACNN+CSRNet | 62.4 | 102.0 | - | - | - | - |
| 2019--CVPR | CAN | 62.3 | 100.0 | - | - | - | VGG-16 |
| 2019--TIP | HA-CCN | 62.9 | 94.9 | - | - | - | - |
| 2019--ICCV | BL | 62.8 | 101.8 | - | - | - | - |
| 2019--WACV | SPN | 61.7 | 99.5 | - | - | - | - |
| 2019--ICCV | DSSINet | 60.63 | 96.04 | - | - | - | - |
| 2019--ICCV | MBTTBF-SCFB | 60.2 | 94.1 | - | - | - | - |
| 2019--ICCV | RANet | 59.4 | 102.0 | - | - | - | - |
| 2019--ICCV | SPANet+SANet | 59.4 | 92.5 | - | - | - | - |
| 2019--TIP | PaDNet | 59.2 | 98.1 | - | - | - | - |
| 2019--ICCV | S-DCNet | 58.3 | 95.0 | - | - | - | - |
| 2020--ICPR | M-SFANet+M-SegNet | 57.55 | 94.48 | - | - | - | - |
| 2019--ICCV |PGCNet | 57.0 | 86.0 | - | - | - | - |
| 2020--ECCV | AMSNet | 56.7 | 93.4 | - | - | - | - |
| 2020--CVPR | ADSCNet | 55.4 | 97.7 | - | - | - | - |
| 2021--AAAI |SASNet | 53.59 | 88.38 | - | - | - | - |


ShanghaiTech Part B

| Year-Conference/Journal | Methods | MAE | MSE |
| ---- | ---------------- | ----- | ---- |
| 2016--CVPR | MCNN | 26.4 | 41.3 |
| 2017--ICIP | MSCNN | 17.7 | 30.2 |
| 2017--AVSS | CMTL | 20.0 | 31.1 |
| 2017--CVPR | Switching CNN | 21.6 | 33.4 |
| 2017--ICCV | CP-CNN | 20.1 | 30.1 |
| 2018--TIP | BSAD | 20.2 | 35.6 |
| 2018--WACV | SaCNN | 16.2 | 25.8 |
| 2018--CVPR | ACSCP | 17.2 | 27.4 |
| 2018--CVPR | CSRNet | 10.6 | 16.0 |
| 2018--CVPR | IG-CNN | 13.6 | 21.1 |
| 2018--CVPR | D-ConvNet-v1 | 18.7 | 26.0 |
| 2018--CVPR | DecideNet | 21.53 | 31.98 |
| 2018--CVPR | DecideNet + R3 | 20.75 | 29.42 |
| 2018--CVPR | L2R (Multi-task, Query-by-example) | 14.4 | 23.8 |
| 2018--CVPR | L2R (Multi-task, Keyword) | 13.7 | 21.4 |
| 2018--IJCAI| DRSAN | 11.1 | 18.2 |
| 2018--AAAI | TDF-CNN | 20.7 | 32.8 |
| 2018--ECCV | ic-CNN (one stage) | 10.4 | 16.7 |
| 2018--ECCV | ic-CNN (two stages) | 10.7 | 16.0 |
| 2019--CVPRW| GSP (one stage, efficient) | 9.1 | 15.9 |
| 2021--TPAMI| LA-Batch (backbone CSRNet) | 8.6 | 13.6 |
| 2018--ECCV | SANet | 8.4 | 13.6 |
| 2019--WACV | SPN | 9.4 | 14.4 |
| 2019--ICCV | PGCNet | 8.8 | 13.7 |
| 2019--ICASSP | ASD | 8.5 | 13.7 |
| 2019--CVPR | TEDnet | 8.2 | 12.8 |
| 2019--TIP | HA-CCN | 8.1 | 13.4 |
| 2019--TIP | PaDNet | 8.1 | 12.2 |
| 2019--ICCV | RANet | 7.9 | 12.9 |
| 2019--CVPR | CAN | 7.8 | 12.2 |
| 2019--CVPR | ADCrowdNet(AMG-attn-DME) | 7.7 | 12.9 |
| 2020--AAAI | DUBNet | 7.7 | 12.5 |
| 2019--CVPR | ADCrowdNet(AMG-DME) | 7.6 | 13.9 |
| 2019--CVPR | SFCN | 7.6 | 13.0 |
| 2019--CVPR | PACNN | 8.9 | 13.5 |
| 2019--CVPR | PACNN+CSRNet | 7.6 | 11.8 |
| 2019--ICCV | BL | 7.7 | 12.7 |
| 2019--ICCV | CFF | 7.2 | 12.2 |
| 2019--ICCV | SPN+L2SM | 7.2 | 11.1 |
| 2019--ICCV | DSSINet | 6.85 | 10.34 |
| 2019--ICCV | S-DCNet | 6.7 | 10.7 |
| 2019--ICCV | SPANet+SANet | 6.5 | 9.9 |
| 2020--CVPR | ADSCNet | 6.4 | 11.3 |
| 2020--ICPR | M-SFANet+M-SegNet | 6.32 | 10.06 |
| 2021--AAAI | SASNet | 6.35 | 9.9 |


UCF-QNRF

| Year-Conference/Journal | Method | C-MAE | C-NAE | C-MSE | DM-MAE | DM-MSE | DM-HI | L- Av. Precision | L-Av. Recall | L-AUC |
| --- | --- | --- | --- |--- | --- | --- |--- | --- | --- | ---|
| 2013--CVPR | Idrees 2013CL| 315 | 0.63 | 508 | - | - | - | - | - | - |
| 2016--CVPR | MCNNCL | 277 | 0.55 | 426 |0.006670| 0.0223 | 0.5354 |59.93% | 63.50% | 0.591|
| 2017--AVSS | CMTLCL | 252 | 0.54 | 514 | 0.005932 | 0.0244 | 0.5024 | - | - | - |
| 2017--CVPR | Switching CNNCL | 228 | 0.44 | 445 | 0.005673 | 0.0263 | 0.5301 | - | - | - |
| 2018--ECCV | CL | 132 | 0.26 | 191 | 0.00044| 0.0017 | 0.9131 | 75.8% | 59.75% | 0.714|
| 2019--TIP | HA-CCN | 118.1 | - | 180.4 | - | - | - | - | - | - |
| 2019--CVPR | TEDnet | 113 | - | 188 | - | - | - | - | - | - |
| 2021--TPAMI| LA-Batch| 113 | - | 210 | - | - | - | - | - | - |
| 2019--ICCV | RANet | 111 | - | 190 | - | - | - | - | - | - |
| 2019--CVPR | CAN | 107 | - | 183 | - | - | - | - | - | - |
| 2020--AAAI | DUBNet | 105.6 | - | 180.5 | - | - | - | - | - | - |
| 2019--ICCV | SPN+L2SM | 104.7 | - | 173.6 | - | - | - | - | - | - |
| 2019--ICCV | S-DCNet | 104.4 | - | 176.1 | - | - | - | - | - | - |
| 2019--CVPR | SFCN | 102.0 | - | 171.4 | - | - | - | - | - | - |
| 2019--ICCV | DSSINet | 99.1 | - | 159.2 | - | - | - | - | - | - |
| 2019--ICCV | MBTTBF-SCFB | 97.5 | - | 165.2 | - | - | - | - | - | - |
| 2019--TIP | PaDNet | 96.5 | - | 170.2 | - | - | - | - | - | - |
| 2019--ICCV | BL | 88.7 | - | 154.8 | - | - | - | - | - | - |
| 2020--ICPR | M-SFANet | 85.6 | - | 151.23 | - | - | - | - | - | - |
| 2021--AAAI | SASNet | 85.2 | - | 147.3 | - | - | - | - | - | - |
| 2020--CVPR | ADSCNet | 71.3 | - | 132.5 | - | - | - | - | - | - |


UCF_CC_50

| Year-Conference/Journal | Methods | MAE | MSE |
| ---- | ---------------- | ----- | ---- |
| 2013--CVPR | Idrees 2013 | 468.0 | 590.3 |
| 2015--CVPR | Zhang 2015 | 467.0 | 498.5 |
| 2016--ACM MM | CrowdNet | 452.5 | - |
| 2016--CVPR | MCNN | 377.6 | 509.1 |
| 2016--ECCV | CNN-Boosting | 364.4 | - |
| 2016--ECCV | Hydra-CNN | 333.73| 425.26 |
| 2016--ICIP | Shang 2016 | 270.3 | - |
| 2017--ICIP | MSCNN | 363.7 | 468.4 |
| 2017--AVSS | CMTL | 322.8 | 397.9 |
| 2017--CVPR | Switching CNN | 318.1 | 439.2 |
| 2017--ICCV | CP-CNN | 298.8 | 320.9 |
| 2017--ICCV | ConvLSTM-nt | 284.5 | 297.1 |
| 2018--TIP | BSAD | 409.5 | 563.7 |
| 2018--AAAI | TDF-CNN | 354.7 | 491.4 |
| 2018--WACV | SaCNN | 314.9 | 424.8 |
| 2018--CVPR | IG-CNN | 291.4 | 349.4 |
| 2018--CVPR | ACSCP | 291.0 | 404.6 |
| 2018--CVPR | L2R (Multi-task, Query-by-example) | 291.5 | 397.6 |
| 2018--CVPR | L2R (Multi-task, Keyword) | 279.6 | 388.9 |
| 2018--CVPR | D-ConvNet-v1 | 288.4 | 404.7 |
| 2018--CVPR | CSRNet | 266.1 | 397.5 |
| 2018--ECCV | ic-CNN (two stages) | 260.9 | 365.5 |
| 2018--ECCV | SANet | 258.4 | 334.9 |
| 2018--IJCAI| DRSAN | 219.2 | 250.2 |
| 2019--AAAI | GWTA-CCNN | 433.7 | 583.3 |
| 2019--WACV | SPN | 259.2 | 335.9 |
| 2019--CVPR | ADCrowdNet(DME) | 257.1 | 363.5 |
| 2019--TIP | HA-CCN | 256.2 | 348.4 |
| 2019--CVPR | TEDnet | 249.4 | 354.5 |
| 2019--CVPR | PACNN | 267.9 | 357.8 |
| 2020--AAAI | DUBNet | 243.8 | 329.3 |
| 2019--CVPR | PACNN+CSRNet | 241.7 | 320.7 |
| 2019--ICCV | RANet | 239.8 | 319.4 |
| 2019--ICCV | MBTTBF-SCFB | 233.1 | 300.9 |
| 2019--ICCV | BL | 229.3 | 308.2 |
| 2019--ICCV | DSSINet | 216.9 | 302.4 |
| 2019--CVPR | SFCN | 214.2 | 318.2 |
| 2019--CVPR | CAN | 212.2 | 243.7 |
| 2019--ICCV | S-DCNet | 204.2 | 301.3 |
| 2021--TPAMI| LA-Batch (backbone CSRNet) | 203.0 | 230.6 |
| 2019--ICASSP| ASD | 196.2 | 270.9 |
| 2019--ICCV | SPN+L2SM | 188.4 | 315.3 |
| 2019--TIP | PaDNet | 185.8 | 278.3 |
| 2020--ICPR | M-SFANet | 162.33| 276.76 |
| 2021--AAAI | SASNet | 161.4 | 234.46 |


WorldExpo'10

| Year-Conference/Journal | Method | S1 | S2 | S3 | S4 | S5 | Avg. |
| --- | --- | --- | --- | --- | --- | --- | --- |
| 2015--CVPR | Zhang 2015 | 9.8 | 14.1 | 14.3 | 22.2 | 3.7 | 12.9 |
| 2016--CVPR | MCNN | 3.4 | 20.6 | 12.9 | 13.0 | 8.1 | 11.6 |
| 2017--ICIP | MSCNN | 7.8 | 15.4 | 14.9 | 11.8 | 5.8 | 11.7 |
| 2017--ICCV | ConvLSTM-nt | 8.6 | 16.9 | 14.6 | 15.4 | 4.0 | 11.9 |
| 2017--ICCV | ConvLSTM | 7.1 | 15.2 | 15.2 | 13.9 | 3.5 | 10.9 |
| 2017--ICCV | Bidirectional ConvLSTM | 6.8 | 14.5 | 14.9 | 13.5 | 3.1 | 10.6 |
| 2017--CVPR | Switching CNN | 4.4 | 15.7 | 10.0 | 11.0 | 5.9 | 9.4 |
| 2017--ICCV | CP-CNN | 2.9 | 14.7 | 10.5 | 10.4 | 5.8 | 8.86 |
| 2018--AAAI | TDF-CNN | 2.7 | 23.4 | 10.7 | 17.6 | 3.3 | 11.5 |
| 2018--CVPR | IG-CNN | 2.6 | 16.1 | 10.15 | 20.2 | 7.6 | 11.3 |
| 2018--TIP | BSAD | 4.1 | 21.7 | 11.9 | 11.0 | 3.5 | 10.5 |
| 2018--ECCV | ic-CNN | 17.0 | 12.3 | 9.2 | 8.1 | 4.7 | 10.3 |
| 2018--CVPR | DecideNet | 2.0 | 13.14 | 8.9 | 17.4 | 4.75 | 9.23 |
| 2018--CVPR | D-ConvNet-v1 | 1.9 | 12.1 | 20.7 | 8.3 | 2.6 | 9.1 |
| 2018--CVPR | CSRNet | 2.9 | 11.5 | 8.6 | 16.6 | 3.4 | 8.6 |
| 2018--WACV | SaCNN | 2.6 | 13.5 | 10.6 | 12.5 | 3.3 | 8.5 |
| 2018--ECCV | SANet | 2.6 | 13.2 | 9.0 | 13.3 | 3.0 | 8.2 |
| 2018--IJCAI| DRSAN | 2.6 | 11.8 | 10.3 | 10.4 | 3.7 | 7.76 |
| 2018--CVPR | ACSCP | 2.8 | 14.05 | 9.6 | 8.1 | 2.9 | 7.5 |
| 2019--ICCV | PGCNet | 2.5 | 12.7 | 8.4 | 13.7 | 3.2 | 8.1 |
| 2021--TPAMI| LA-Batch(backbone CSRNet)| 2.4 | 11.0 | 8.1 | 13.5 | 2.7 | 7.5 |
| 2019--CVPR | TEDnet | 2.3 | 10.1 | 11.3 | 13.8 | 2.6 | 8.0 |
| 2019--CVPR | PACNN | 2.3 | 12.5 | 9.1 | 11.2 | 3.8 | 7.8 |
| 2019--CVPR | ADCrowdNet(AMG-bAttn-DME) | 1.7 | 14.4 | 11.5 | 7.9 | 3.0 | 7.7 |
| 2019--CVPR | ADCrowdNet(AMG-attn-DME) | 1.6 | 13.2 | 8.7 | 10.6 | 2.6 | 7.3 |
| 2019--CVPR | CAN | 2.9 | 12.0 | 10.0 | 7.9 | 4.3 | 7.4 |
| 2019--CVPR | CAN(ECAN) | 2.4 | 9.4 | 8.8 | 11.2 | 4.0 | 7.2 |
| 2019--ICCV | DSSINet | 1.57 | 9.51 | 9.46 | 10.35 | 2.49 | 6.67 |
| 2020--ICPR | M-SFANet | 1.88 | 13.24 | 10.07 | 7.5 | 3.87 | 7.32 |
| 2020--CVPR | ASNet | 2.22 | 10.11 | 8.89 | 7.14 | 4.84 | 6.64 |
| 2021--AAAI | SASNet | 1.134 | 13.24 | 7.68 | 7.61 | 2.07 | 5.71 |


UCSD

| Year-Conference/Journal | Method | MAE | MSE |
| --- | --- | --- | --- |
| 2015--CVPR | Zhang 2015 | 1.60 | 3.31 |
| 2016--ECCV | Hydra-CNN | 1.65 | - |
| 2016--ECCV | CNN-Boosting | 1.10 | - |
| 2016--CVPR | MCNN | 1.07 | 1.35 |
| 2017--ICCV | ConvLSTM-nt | 1.73 | 3.52 |
| 2017--CVPR | Switching CNN | 1.62 | 2.10 |
| 2017--ICCV | ConvLSTM | 1.30 | 1.79 |
| 2017--ICCV | Bidirectional ConvLSTM | 1.13 | 1.43 |
| 2018--CVPR | CSRNet | 1.16 | 1.47 |
| 2018--CVPR | ACSCP | 1.04 | 1.35 |
| 2018--ECCV | SANet | 1.02 | 1.29 |
| 2018--TIP | BSAD | 1.00 | 1.40 |
| 2019--WACV | SPN | 1.03 | 1.32 |
| 2019--ICCV | SPANet+SANet | 1.00 | 1.28 |
| 2019--CVPR | ADCrowdNet(DME) | 0.98 | 1.25 |
| 2019--BMVC | E3D | 0.93 | 1.17 |
| 2019--CVPR | PACNN | 0.89 | 1.18 |
| 2019--TIP | PaDNet | 0.85 | 1.06 |


Mall

| Year-Conference/Journal | Method | MAE | MSE |
| --- | --- | --- | --- |
| 2012--BMVC | Chen 2012 | 3.15 | 15.7 |
| 2016--ECCV | CNN-Boosting | 2.01 | - |
| 2017--ICCV | ConvLSTM-nt | 2.53 | 11.2 |
| 2017--ICCV | ConvLSTM | 2.24 | 8.5 |
| 2017--ICCV | Bidirectional ConvLSTM | 2.10 | 7.6 |
| 2018--CVPR | DecideNet | 1.52 | 1.90 |
| 2018--IJCAI| DRSAN | 1.72 | 2.1 |
| 2019--BMVC | E3D | 1.64 | 2.13 |
| 2021--TPAMI| LA-Batch (backbone CSRNet) | 1.34 | 1.60 |
| 2019--WACV | SAAN | 1.28 | 1.68 |